ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Faculty

Lauren L. Ritterhouse, MD, PhD
Associate Director, Center for Integrated Diagnostics,
Massachusetts General Hospital
Assistant Professor of Pathology, Harvard Medical School

Objectives

Summarize ongoing investigational efforts regarding TMB and its ability to predict response to checkpoint inhibitor therapy

Discuss the current advantages and limitations to the testing and interpretation of TMB
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Course Outline

Overview
Current Evidence Surrounding TMB
Calculating, Interpreting, and Reporting TMB Measurements
Conclusion and Additional Resources

Overview

Overview: Current IO Therapy Biomarker Landscape

- PD-L1 IHC
- Microsatellite instability-High (MSI-H) or Mismatch repair deficient (dMMR)
- Tumor mutational burden (TMB)
- Gene expression profiling
- Multiplex immunohistochemistry/immunofluorescence
- Immune cell repertoire diversity
- Many others...

Current Clinical Practice
Emerging
Investigational

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast: Tumor Mutational Burden

Overview: TMB’s Role as an Emerging Predictive Biomarker

- Measurement of the number of mutations that exists within a tumor
- Has been proposed to be a useful biomarker in predicting response to immune checkpoint inhibitors in several tumor types

Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer

Kombucha plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden

TMB mutational load predicts survival after immunotherapy across multiple cancer types

Cancer Cytopen. 2019 Dec;127(12):735-736

TMB Across Tumor Types

Nature Biotechnology 34, 9019–9024 (2016)
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Overview: TMB's Relation to MSI and PD-L1

Current Evidence Surrounding TMB
Current Evidence Surrounding TMB: Evidence and Indications from Current Trials

- Data from trials are contradictory
- CheckMate 227
 - Nivo+ipi versus chemotherapy in 1st line NSCLC
 - High TMB (>10 mut/Mb) ICI associated with longer PFS (irrespective of PD-L1)
 - Did not hold for OS
- KEYNOTE-021, 189, 407
 - Pembrolizumab plus platinum-based chemotherapy for metastatic NSCLC
- KEYNOTE-010, 042
 - Pembrolizumab monotherapy in PD-L1 positive advanced NSCLC

Evidence and Indications from Current Trials, continued

KEYNOTE-010: phase 1/2, 2L+
KEYNOTE-042: phase 3, 1L, PD-L1x1%
KEYNOTE-021: phase 1/2, 1L, NSQ
KEYNOTE-189: phase 3, 1L, NSQ
KEYNOTE-407: phase 3, 1L, SQ

LBA79: Association between tissue TMB (ITMB) and clinical outcomes with pembrolizumab monotherapy (pembro) in PD-L1-positive advanced NSCLC in the KEYNOTE-010 and 042 trials – Herbst RS, et al

- Study objective
 - To evaluate the association between ITMB levels and outcomes in the KEYNOTE-010 and KEYNOTE-042 trials

- Key patient inclusion criteria
 - Advanced NSCLC
 - PD-L1 positive
 - PD-L1 TP53
 - ≥1 tumor samples

- ITMB assessment by whole exome sequencing of tumour tissue
 - OS, PFS, ORR association with ITMB assessed

- Conclusion: Previously treated or unselected patients with PD-L1+ NSCLC, high ITMB was associated with improved clinical outcomes in those receiving pembro monotherapy

*Pre-specified cut-points at 175 mut/exome; assessed as continuous log_{2} transformed variable

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

LBAIE: Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: tumor TMB (TMB) and outcomes in KEYNOTE-021, 189, and 467 – Paz-Ares L, et al

- Study objective
 - To evaluate the association of TMB with efficacy of pembrolizumab + platinum-based chemotherapy vs. platinum-based chemotherapy alone

 Key patient inclusion criteria:
 - Untreated stage IV NSCLC, squamous or non-squamous NSCLC
 - ALK or EGFR negative
 - ACGO PS 0-1

 TMB assessment by whole exome sequencing of tumour tissue

 Outcomes (OS, PFS, ORR) association with TMB assessed

 Conclusion: No association between TMB and efficacy in all studies. Pembro + chemo had OS, PFS, and ORR benefits in both low and high TMB groups (≥175 or <175 mut/exome)

Calculating, Interpreting, and Reporting TMB

Calculating, Interpreting, and Reporting TMB: Assays Used

Gold standard: matched tumor-normal whole exome sequencing

Targeted panels: either matched tumor-normal or tumor only targeted cancer gene panels
- Caris SureSelect XT
- Foundation One CDx
- Illumina TruSeq
- MSK-IMPACT
- NeoGenomics Neotype
- PGDx elio tissue complete
- QIAGene TMB panel
- ThermoFisher Oncomine
- TMLA
- Numerous academic labs

* not a comprehensive list
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Friends and QuIP Objectives

- Identify variation between TMB assessed by WES and targeted panels
- Create TMB reference standards to facilitate alignment between various assays
- Assess interassay/interlab variability and identify sources of variation
- Develop recommendations to minimize variation in methods of TMB estimation and reporting
- Inform and advise best practices for prospective clinical studies

Factors Influencing TMB Calculation

ASCP Immuno-Oncology Scientific Updates Webcast: Tumor Mutational Burden

Factors Influencing TMB Calculation: Recommendations

<table>
<thead>
<tr>
<th>Factor</th>
<th>Parameter</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-analytical</td>
<td>Sample processing</td>
<td>• Standardize sample processing protocols
• Minimize interlaboratory variability</td>
</tr>
<tr>
<td>Sequencing parameters</td>
<td>Genomic region covered</td>
<td>• Select gene panels that screen for actionable mutations or biomarkers
• Select panels with larger genome coverage (ideally >1 megabase or greater)</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Standardization of workflow</td>
<td>• Align panel-derived TMB values to a WES analysis-derived reference standard to ensure consistency regardless of the assay
• Standardize bioinformatic algorithms used for mutation calling and filtering</td>
</tr>
<tr>
<td>Comparison of results</td>
<td>Calibration of outputs</td>
<td>• Ensure reporting consistency by developing templates for clinically meaningful reporting (e.g., report TMB as mutations per megabase)
• Allow calibration of results from different studies</td>
</tr>
</tbody>
</table>

Outline of QuIP TMB Harmonization Study

20 FFPE tumor samples with matched WES data available

Comparative Analysis:
- TMB level and correlations
- Bridging from pTMB to aesTMB
- TMB classification
- Inter-lab comparisons of the identified variants
- Germline mutation filtering

Pre-analytic Factors

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Assay Clustered Together Independent of Operating Lab

2-tier vs. 3-tier Classification

- 2-tier classification: 3-tier and 5-tier tests
- 3-tier classification: 3-tier and 5-tier tests

- Misclassification: 25%
- Weak misclassification: 22%
- Strong misclassification: 1.5%

Interlaboratory Reproducibility

- False-positive variants:
 - Higher in assays without duplicate removal (deduplication) (CTML)
 - Particularly in specimens with highly fragmented, low-quality DNA samples with over-calling of C>T or A fixation artifacts
 - Low-frequency variants close to the VAF cut-point contributed considerably to panel TMIs calling variation between assays/labs.

- False-negative calls:
 - Associated with insufficient depth of coverage at the respective positions and DNA input

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast:
Tumor Mutational Burden

Germline Filtering and Panel Size
- Germline Filtering
 - Performance of filtering using SNP databases for LUAD sample
 - Sensitivity (PPV) for calling mutation as somatic:
 - 97% (90%) → gnomAD
 - 90% (90%) → ExAC
 - 70% (91%) → dbSNP
 - Limiting to more common SNPs (minor allele frequency >0.001 in gnomAD)
 - Increased sensitivity to 98% but decreased PPV to 81%
- Panel Size
 - At least 1 Mbp in size (coding)
 - Even with large panels, variability of TMB score is expected due to probabilistic nature
 - Simulating 5 commercial panels in WES data, only 17-28% additional error occurred on top of probabilistic error, demonstrating that sufficient panel size is more critical than particular panel content

Study Summary
- Overall low influence of specific laboratory performing the analysis
- Commercial labs were in range of respective TMB scores determined by hospital labs
- Most panels had moderate to strong correlations with TMB measured by WES
 - r(64)=0.84

FOCR Phase I: In Silico Analysis
- TCGA data from 32 tumor types
 - Theoretical variability of panel-derived TMB estimates relative to common, standardized WES-derived TMB across various panels
- 11 labs took WES data from TCGA and calculated TMB from their panel subset of exome using their own pipelines (panel TMB)
- Reference TMB value was created from WES data using a uniform agreed upon bioinformatics pipeline

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast: Tumor Mutational Burden

Assays Used in FOCR In Silico Study: Results Blinded

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Panel name</th>
<th>A panels</th>
<th>Used sample median (IQR)</th>
<th>TMB median (IQR)</th>
<th>Published references, methodology, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC</td>
<td>Prestige</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>Roswell Park Comprehensive Cancer Center</td>
<td>RoswellParkCCC</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>MD Anderson</td>
<td>MDAnderson</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>Dana Farber</td>
<td>DanaFarber</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>MSKCC</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>St Jude Children's Research Hospital</td>
<td>StJude</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Stanford</td>
<td>1244</td>
<td>4.9</td>
<td>7.5</td>
<td>Non-applicable, NA</td>
</tr>
</tbody>
</table>

Regression for Panel TMB as a Function of WES TMB

A) All Cancers

B) 73% of assays had slope values >1, indicating overestimation of TMB

Due to blinded nature, contributing factors couldn’t be analyzed

When limiting analysis to 8 cancer types (stratum 1), only 50% of assays had slopes >1

Correlation by Tumor Type

All 11 labs overestimated bladder cancer TMB

Copyright © 2020. American Society for Clinical Pathology. All rights reserved.
ASCP Immuno-Oncology Scientific Updates Webcast: Tumor Mutational Burden

Consensus Recommendations

- Accuracy
 - Should be determined by validating against reference TMB values
 - Comparable companion diagnostic with FDA clearance/approval
 - WES w/ validated performance and standardized TMB calculation method
 - At least 30 samples over range of TMB (0-40 mut/Mb)
 - TMB: continual vs. categorical have specific metrics

- Precision
 - Performed using several samples with analyses as outlined in accuracy studies
 - Evaluated as composite score (mut/Mb)
 - TMB: continual vs. categorical have specific metrics

Consensus Recommendations, continued

- Sensitivity
 - Impact of tumor purity on TMB categorical call should be evaluated using multiple samples
 - 6-10 undiluted samples where each sample is diluted to at least 5 levels of tumor purity w/ 10 replicates at each level

- QC
 - QC metrics: median exon coverage, coverage uniformity, etc
 - Identify % of tests passing TMB QC metrics in routine testing
FOCR Phase 2B: Alignment to Clinical Samples

FOCR Phase 2B: Calibration Approaches

FOCR Phase 2B: Alignment to Clinical Samples, continued

- Variability across labs/assays was similar when testing FFPE-derived tumor samples to that observed in TCGA samples and cell lines

- Calibration approaches using TCGA data were more robust than using a small number of cell line samples
 - May be a viable approach to align across panel TMB scores
 - Additional work needed
Conclusions and Future of TMB

- Clinical utility data is still emerging
- TMB may have more significance in certain tumor types and in certain therapeutic settings
- Increasing data and recommendations for laboratories calculating and reporting TMB
- FOCR, QuIP → further phases and publications forthcoming
- Recommendations for validating against other FDA cleared/approved assays or against a reference standard WES

Additional Resources

- Friends of Cancer Research
 - focr.org/tmb
- Detailed validation recommendations: